
Int. 1. Solids Structures, Vol. 11, pp. 305-320. Pergamon Press 1975. Printed in Great Britain

THE EQUILIBRIUM OF SHORT
STRAIN-HARDENING STEEL COLUMNS

BEN KATO and H. AKIYAMA

Faculty of Engineering, University of Tokyo, Japan

(Received 19 February 1974; revised 24 June 1974)

Abstract-The post buckling behavior of short, centrally loaded, structural steel columns subjected to
monotonically increasing axial deformation is predicted analytically using a simplified Shanley model and the
numerical results obtained are compared with experimental data, Because of the presence of the plastic flow
and strain-hardening regions in the stress-strain relation, this behavior is very complex, It is shown that
columns having slenderness ratios less than a certain critical value can, after buckling laterally a limited
amount, actually return to their straight position prior to buckling to complete failure.

NOTATION
The following symbols are used in this paper:

A = sectional area of the cell.
a = half length of the cell.
b = half width of the cell, radius of gyration, core radius.
E = Young's modulus.

eo> e, = change of the length of cell elements.
E" = strain hardening modulus.
L =length of the column.

M. = external bending moment.
11M. = increment of the external bending moment.

M, = internal bending moment.
11M. = increment of the internal bending moment.

P =axial thrust.
I1P = increment of the axial thrust.

I1P, = increment of the force in element c.
PE = 2AElaA 2 = Euler load.
PR =4AE"laA 2 =reduced modulus load.
PT = 2AE"laA 2 = second tangent modulus load.

I1Pt = increment of the axial force in element t.
P. = AO'. = compressive maximum strength of the stub-column.
P, = axial yield load.
a = aiL.
l'=P,IPR •

8= lateral deflection of the column.
8' = 1181b = nondimensional deflection of the column.

118 = increment of the column deflection.
118' = 1181b = nondimensional deflection increment.

e, = strain in element c.
l1e, = inelastic strain increment in element c.

Eo:;:: Est - Ey.

e" = strain at strain hardening point.
e, = strain in element t.

l1e, = inelastic strain increment in element t.
e, = strain at yield point.
A= Lib = slenderness ratio of the column.

0'. = tensile strength or compressive maximum strength of the material.
0', = yield point.

Subscripts 1,2, 3-attached to P, I1P and 8(5'),118(118') indicate that those values are of terminal point of Regions 1,2,
3-respectively.
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INTRODUCTION

The post buckling behavior of short centrally loaded columns depends greatly on the
stress-strain characteristics of the material. In the case of structural steel, the elastic,
plastic-flow, and strain hardening regions define the main characteristics involved. When a
column of this material is subjected to monotonically increasing axial deformation, its flexural
rigidity reduces to zero as the axial stress builds up to the yield value. When this point is reached,
the column will immediately buckle laterally indicating the bifurcation point has been reached.
The column will maintain static equilibrium with increasing axial deformation but the axial load
will gradually decrease from its initial yield value. After a certain amount of axial deformation,
strain-hardening in the material will occur causing the axial load to increase with further
increases in axial deformation. If the column is very short, the earlier loss in load carrying
capacity will be completely restored as the axial deformation is increased and the ultimate load
carrying capacity eventually reached will be considerably larger than the initial yield load.

During post buckling of very short columns, the lateral displacement pattern is quite complex.
For example" after a limited amount of buckling, the column can actually return to its original
straight position prior to buckling a second time to complete failure.

To provide a better understanding of the post buckling behavior described above, analytical
relations for axial load vs lateral deflection up to complete failure are derived herein using a
simplified mathematical model similar to that of Shanley [1]. The characteristic behavior obtained
from this model is then compared with the results of tests conducted on H-shaped steel columns.

It is believed that the findings of this study will shed considerable light on other types of
inelastic buckling, e.g. the coupled flexural-torsional buckling of steel beams and beam columns
which is such an important consideration in plastic design or in aseismic design. Based on
experimental observation, Galambos [2,3] first pointed out that the initiation of flexural-torsional
buckling of an H-shaped member does not disturb the development of its in-plane plastic moment
provided the slenderness of the member is sufficiently small. Lay [4,5] then treated this problem
theoretically and introduced the intuitive concept of "dynamic jump of strain in plastic region".
Since lateral buckling can be thought of as the flexural buckling of a flange in its own plane, the
present analysis explains the physical meaning of Lay's intuitive assumption.

Another type of inelastic buckling which can be better understood with the present analysis is
the local flange buckling of H-shaped sections. In this case, a phenomenon similar to the post
buckling behavior described above is observed, namely, a flange will start to wrinkle as soon as
the compressive stress reaches the yield point but the amplitude of the wrinkle will not continue
to grow with increases in loading of the member; thus, the overall load earring capacity of the
member will not be reduced provided the width-to-thickness ratio of the flange is within certain
limits [6,7]. Although this is a problem of plate instability, the fundamental mechanism of
equilibrium is similar to that shown by the present analysis.

ANALYTICAL MODEL AND INITIAL CRITICAL LOAD

As previously pointed out, the post buckling behavior of short centrally loaded columns
depends greatly on the stress-strain characteristics of the material. Structural steel is
characterized by the elastic, plastic flow, and strain-hardening regions of the stress-strain
relationship. In the present study, this relationship is simplified by assuming the rigid-plastic
flow-strain hardening relation shown in Fig. 1 by a bold line where {]'y is the yield stress, Ey is the
corresponding yield strain, and Est is the strain at which strain hardening begins. The strain
hardening modulus Est is assumed to remain constant in this relation.

The centrally loaded steel column having both ends hinged is modelled mathematically using
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Fig. 1. Stress-strain relation.

the Shanley model shown in Fig. 2. This model has two rigid arms inter-connected by a cell
consisting of two flange elements each having a cross sectional area A /2. It is assumed that
buckling takes place in the web plane only and that shear deformations can be ignored.

The initial critical load of the column is easily determined from the model by equating the
external and internal bending moments. As indicated in Fig. 2(b), ec and e, denote the changes in
length of cell elements c and t, respectively, which occur after the start of bending. The resulting
geometry changes cause a lateral deflection as given by

where Ec = ec /2a and E, = e.l2a are the strains in flange elements c and t, 2a equals the cell
length, and b is the half-width of the cell equal to the radius of gyration and also equal to the core
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Fig. 2. Shanley's model.
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radius in the model. The external bending moment at the hinge is

while the internal bending moment about the hinge point is

where Be and E, are the effective moduli of their respective elements. Equating internal and
external bending moments, one obtains

(1)

where A = Llr == LIb is the slenderness ratio and a == aIL. When buckling occurs in the elastic
range, Be = E, = E in which case Eq. (1) reduces to the Euler form

(2)

If PE is larger than the axial yield load for the column, elastic buckling cannot occur; however,
inelastic buckling can occur starting as soon as the stresses in the flange elements of the cell reach
the yield value. Buckling is initiated at this instant of loading since no bending stiffness is present
in the member (Be = E, == 0). Thus, the initial critical load of a short column is always equal to the
axial yield load for the section, namely, Py = Auy • Of principal interest here however is the post
buckling behavior of such members. Therefore, the subsequent analytical treatment considers
the post yield behavior of columns having slenderness ratios A :s; Y2E/auy•

POST BUCKLING BEHAVIOR

A. Region l-Strain in element c increases from Ey to Est while elastic strain reversal takes place in
element t

Immediately after the column starts to deflect laterally under the action of an axial yield
thrust, strain reversal must take place in element t to maintain static equilibrium. Clearly, if the
strains in both elements were to increase into the plastic flow range, there could be no change in
the internal bending moment to balance the change in external bending moment caused by
deflection of the column. Thus, the strain reversal in element t must take place.

Consider the increment of hinge rotation MJ from the critical straight state as shown in Fig. 3.
The increment of strain in element t, which is the elastic strain reversal, is shown equal to zero in
this figure consistent with the infinite modulus of the material as represented by the rigid portion
of the rigid-plastic flow-strain hardening relationship. The increment of lateral deflection of the
column is given by
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limit state of Region1
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Fig. 3. Region 1.

where ~Ec is the inelastic strain increment in element c. The increment of internal bending
moment about the hinge point is

where ~Pt is the increment of axial force in element t and ~P is the increment of external axial
thrust. These increments of force are taken as positive when they represent increasing
compressive forces. The increment of external bending moment at the hinge is

~Me = (Py+ flP)M.

Equating the increments of internal and external bending moments, one obtains,

thus, the axial thrust P for a given deflection flo becomes

(3)

Introducing the following nondimensional expression

Eq. (3) can be written as

(3)'

Equations (3) and (3)' are valid until flEe reaches the value Eo = Est - Ey• At this terminal point, the
lateral deflection ol(or 0;), the increment of axial thrust flPJ, and the total axial thrust PI are
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given by the relations

aA 2

81= (118)t.Ec~<o = 4bEo

or

8' aA
2

(4)1=4Eo

I1PI = I1P, = (1~81;)py (5)

PI = C:8Jpy (6)

where

8; = 81/b.

B. Region 2-Strain in element c increases into the strain hardening region while the strain in
element t remains in the elastic region

The increments of strain, deflection, and forces are measured from the terminal state of
Region 1 as shown in Fig. 4. In this case, one obtains the relations

a ,2 ,2

M = -i-b I1Ee, or M' = TIlEe

Ap =AES'A
I.l e 2 I.lEe

I1P = I1Pe + I1P,

11M, = (IlPe -I1P,)b = (AEst ilEe -I1P)b

11M. = (PI +I1P)(81 +M) - P18!

= PIM + I1P8! + I1PM

(2-1)

(2-2)

(2-3)

(2-4)

(2-5)

where I1Pe denotes the increment of force in element c. Equating the above increments of

r
b

t--
b

L
limit state of Re ion 2

Fig. 4. Region 2.
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internal and external bending moments gives

from which

where

P _ 4AEs,
R - aA2

represents a reduced modulus load. Substituting for PI from Eq. (6), one obtains

_[ 0+8;-,,)AD' ]
liP - ,,0 + 8DO + 8', + AD') P,

where

The axial thrust can now be expressed as

Using Eq. (2-3), the force increment in element t becomes

Substituting for liP from Eq. (7) results in the relation

liP = Py [0-2,,-8;2)-0+8DAD']AD'
'2" 0+8DO+8;+li8') .

From the form of Eq. (9), three sub regions can be defined as follows:
0) Sub-region 2-A. Note that when the relation

311

(7)

(8)

(9)

(10)

is satisfied, liP, as given by Eq. (9) is negative for positive values of li8'. This condition means
that the strain reversal in element t continues with increasing axial deformation to the point of
complete failure of the column. The entire post-yield behavior of the column is therefore
expressed by Eq. (8). Note that the terminal strength of the column as li8' approaches infinity is
PRo

(2) Sub-region 2-B. If the term 0- 2" - 8;2) is positive, liP, as given by Eq. (9) will also be
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positive when li8' fa,lIs in the range
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The peak value of liP, within this range corresponds to that value given by Eq. (9) when li8'
satisfies the maximum condition

d(liP,)
d(M') =0;

thus, one obtains

(liP) = PR {[Y2(1 + 8; - 'Y) - (1 + 8 DJ2}
'm 2 1+8;

(M')m = Y2(1 + 8; - 'Y) - (1 + 8D.

(11)

(12)

If (liP,)m given by Eq. (11) is smaller than the decrease of compressive load undergone at the
terminal state of Region 1,

PR{[Y2(1+8;-'Y)-(1+8 Df}< 8;P,
2 1+8; 1+8;

which reduces to

(13)

then the stress in element t never reaches the yield point and the post-yield behavior of the
column is again defined by Eq. (8).

(3) Sub-region 2-C. If on the other hand, the condition

(14)

is satisfied, the stress in element t can recover the decrease given by Eq. (5); thus, it will return
once again to the yield level. Since Eqs. (7)-(9) are valid only when the strain in element t remains
in the elastic region, the terminal equilibrium state of Region 2 is obtained by equating the value
of liP! given by Eq. (9) to the negative value of liP! given by Eq. (5). Therefore, one obtains the
terminal condition

which reduces to

(15)
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where A8i is the nondimensional deflection increment at the terminal state of Region 2. The
corresponding strain increment in element c is

(16)

Replacing AS' in Eq. (8) by AS~ and making use of Eq. (15), the axial thrust at the terminal state
becomes

(17)

where 8~ is the total nondimensional deflection at the terminal state of Region 2, namely

(18)

C. Region 3-Plastic flow takes place in element t while elastic strain reversal takes place in
element c

If plastic flow takes place in element t while maintaining the yield stress, equilibrium is
possible only when strain reversal occurs in element c. This situation is just the reverse of that
condition definr:d by Region 1. Referring to Fig. 5, the performance of the column in this region
can be described by the relations

AS' - aA 2A (3-1)--4 Et

(3-2)

(3-3)

(3-4)

Equating the increments of internal and external bending moments gives

T
b

+--
b

~

Fig. 5. Region 3.
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or

Thus

and
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8' = 8;+A8'.

(19)

(20)

(21)

Note that li8' has a negative sign in the above equations. Also note that if 8. were to exceed b, the
stress in the convex side element would become tension since b is the core radius of the section.
This condition can never develop however in the present problem. Therefore, 8: =8.tb must
always be less than unity. Considering these two facts, it is clear that liPe in Eq. (19) must be
negative. Equations (19)-(21) are, of course, valid only until the strain in element t reaches the
strain hardening point.

As seen in Fig. 5, the total increment of absolute deflection at the terminal point of Region 3 is
equal to 8J, i.e.

(22)

Substituting this value of li8~ into Eq. (20) for li8', the terminal axial thrust for Region 3 is found
to be

Substituting for P2 from Eq. (17) and making use of Eq. (15), this equation reduces to the form

(23)

The terminal deflection in Region 3 is

(24)

Making use of Eqs. (19) and (22), the decrease of axial thrust and thus the decrease of stress in
element c is found to be

Substituting for P2 from Eq. (17), one obtains

(25)
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D. Region 4-Compressive strain in element t increases into the strain hardening region while the
compressive strain in element c increases again elastically

The incremental changes which take place in Region 4 are shown in Fig. 6. One finds in this
case that

f1Mi = (f1Pc - A;s'f1€')b

= (f1P - AEsr f1€,)b

f1Me= P3f18 + f1P8 3 + f1P M.

Equating the increments of internal and external bending moments gives

Solving for f1P, one obtains the relation

The axial thrust and deflection are found to be

t' = 8;+M'.

(4-1)

(4-2)

(4-3)

(4-4)

(26)

(27)

(28)

Note that f18' in this region is negative. The increment of stress in element c is given by

T
b

+--
b

1-

(29)

limit state of Re Ion 4

Fig. 6. Region 4.
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If the term (1- 2y - 8~2) is positive, <lPc as given by Eq. (29) will also be positive when <l8' falls
in the range

Using Eqs. (15) and (24), the term (I 2y - 8;2) can be written in the form

(30)

It is clear that the right hand side of Eq. (30) must be positive. Therefore it is shown that the
compressive stress in element c, which decreased elastically in Region 3, is now increasing
elastically. Obviously, <lPc must have a peak value at some point in the above range for <l8'. This
peak value and its corresponding value of <l8' are found using the maximum condition
d(<lPc)/d(M') = 0 which results in the relations

(M')", (l 8D-Y2(1-8;-y)

PR [(1- 8D - Y2(1- 8; - y)f
2 1- 8;

(31)

(32)

If (<lPc)m is larger than the decrease of stress which occurred from the limit state of Region 2 to
the limit state of Region 3 as given by Eq. (25), the full strain reversal undergone in Region 3 will
be recovered and the terminal point of Region 4 will be reached when the stress in both elements
c and t arrives at the starting point of the virgin strain hardening region. This condition can be
checked by calculating the value

D ==(AP) -<lP =PR{[(I-8~)-Y20-8~-Y)f_ 8;M& }
U c m 3 2 1- 8; 8&(1 M&)'

Making use of Eqs. (15) and (24), this relation simplifies to

D PR[l Y2(1-8~-y)]2

2 1- 8~
(33)

From this form, it is obvious that D is positive; hence, it is shown that (<lPc)", > <lP3 • The
condition that the strain reversal in element c which took place in Region 3 is just recovered, thus
defining the terminal point of Region 4, is <lP3 + <lP,. = 0 or

_PR{ 8;<l8& [(1-2Y-8~2)+(1-8;)<l8']<l8'}
2 8&0- M&) + (1- 8;)0- 8j - M') O.

Making use of Eqs. (15) and (24), Mi' to be used in Eq. (34) becomes equal to

(34)

(35)
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Introducing this relation into Eqs. (27) and (28), one obtains

a~ = a; +Aa~ = a; - o~ = o.

317

(36)

(37)

From Eq. (37), it is seen that at the terminal point of Region 4, the column has returned back to its
original straight configuration.

E. Region 5-Pure axial compression up to final failure
Since the column is now straight, it will be subjected to pure compression in Region 5. The

tangent modulus load in this state is given by substituting Est for E in Eq. (2); thus,

P _ 2AEst_lp
T - aA 2 - 2 R· (38)

As soon as this critical load is reached, buckling will again take place accompanied by strain
reversal in one flange element. The post buckling behavior can be analysed using procedures
similar to those previously presented in which case one obtains

P =PR(I+2a')
2 1+0' . (39)

From this relation it is seen that as 0' approaches infinity, the column strength approaches PRo
Actually, the column strength can never exceed the value Pu Auu where uu is the maximum
strength of the material as controlled by local buckling. If PT is larger than Pu, the P vs a' relation
during the collapse state can be expressed in the form

P Pu

= 1+0"

In this case, the strain reversal which takes place in the convex side element is elastic.

(40)

EXAMPLES

The post buckling behaviors of several columns with different slenderness ratios, as predicted
by the foregoing analysis, are illustrated in Fig. 7. In these examples, typical mild steel was
assumed for the material and the mechanical properties were specified as follows [8]:

Ey = 1·2 x 10-\ Eo = lOfy, Uu = 1·8uy, Est = 0·03E.

For actual columns, the ratio of cell length to column length represents the ratio of the
longitudinal dimension of the inelastic zone to the column length. This ratio was assumed rather
arbitrarily equal to 0·4 in the examples.

From the results shown in Fig. 7, it is seen that columns with slenderness ratios smaller than
some critical value can return back to their original straight position after having undergone
limited amounts of buckling. The critical slenderness ratio is given by Eq. 14 which yields a
numerical value of 11·4.
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Fig. 7. Load-deflection curves.

In the present study, it was assumed that E" remained constant throughout the post yield
performance, even though, it is obvious that it decreases with increasing inelastic strain. Ratio
a = aIL was also assumed to remain constant in the post yield range, even though, the inelastic
zone expands considerably with increasing column load [9].

TEST RESULTS

Tests were carried out on H-shaped steel columns as shown in Fig. 8. All test specimens were
designed to buckle in the web direction. The average mechanical properties over the cross section
were determined from stub-column compressive tests which gave the following results:

E" = 1270 x 10-5 = 10E., Est =74t Icm2 =0·0352E.

These properties are similar to those adopted in the calculations of the foregoing examples.
To demonstrate the validity of basic theory presented herein, the test results of two column

specimens having quite different behaviors are shown in Fig. 9. In these tests, no local buckling of
plate elements or lateral torsional buckling was observed until the final collapse stage of the
columns had been reached. Specimen No.1 had a slight initial imperfection which may have
caused the small lateral deflections which occurred in the early stages of loading. This
imperfection may also have had some influence on the post buckling behavior.



The equilibrium of short strain-hardening steel columns

I ~I~
~

L
Lmm A

l INo.! 600 9.06

No.2 900 13.6

P

Fig. 8. Test specimens.

319

P
Py

NO.1 L c 600mm,A-9.06 ..E.
Py

NOZ L c 900mm,A-I3.6

---- theo...tlcol
- experlmentol

0.5,+-_-----'-__--'-_---::'_.
o 5 10 15XIO-2

e' e'

Fig. 9. Test results.

The theoretically predicted behaviors for these test specimens are shown in Fig. 9 by dashed
lines. The ratio a was assumed equal to 0·2 in making these predictions. This value was selected
because it gives an Euler load, Eq. 2 PE = 2AE/aA 2 = 10AE/A 2, which is nearly equal to
PE = 7T

2AE /A2 =: lOAE /A2 which is the Euler load for the actual column.
Although the theoretical predictions are based on an extreme simplification of the problem,

the general post buckling behaviors obtained show close resemblances to the actual column
behaviors.

The major differences found between theoretical predictions and actual column behaviors are
thought to come from the neglect of web participation, the uncertainty of estimating equivalent
cell length, and the assumption of a constant strain hardening modulus, in making the theoretical
predictions. It is believed that the participation of the web in actual columns makes the real post
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buckling behavior characteristics somewhat less pronounced than those predicted by theory.
Obviously, the errors introduced by the assumption of a constant strain hardening modulus
become large with increasing strain.

CONCLUSIONS

Although accurate quantitative predictions of actual column behavior cannot be made with
the present theory which is based on a simplified model, the basic phenomena of column action in
the post buckling region are qualitatively shown by the theory. This statement has been verified
by the experimental evidence presented. Thus it may be concluded that

(1) The first critical load of columns having an Euler load much larger than the axial yield load
is the axial yield load itself.

(2) Columns with slenderness ratios smaller than a certain critical value can return back to
their original straight position after some initial buckling and their final failure will be governed by
the smaller of the second tangent modulus load and the maximum strength load of the material.

(3) Columns with slenderness ratios larger than the critical value cannot experience a reversal
of lateral deflection but some of the loss in axial load which takes place due to plastic flow in the
early stage of buckling can be restored upon further buckling.
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